How To Use a Guard Opening Scale

Point-of-operation barrier guards are essential safeguarding equipment for hazardous industrial processes and machinery such as presses, pumps, motors and drills. When properly installed the barriers prevent a person from placing any part of their body into the point of operation by reaching through, over, under or around the guards to access a hazard. However, because barrier guards are typically constructed out of materials such as wire mesh, expanded metal, rods, or hairpins, most have openings that present the potential for injuries if a person reached through them. As a result, whether the guard is fixed, adjustable, movable, or interlocked, any openings must be measured for compliance with Table O-10 of OSHA 29 CFR 1910.217 (Mechanical Power Presses), current ANSI/CSA standards, or International standard ISO 13857 to determine the safe distance from the hazard.

The critical role of measuring barrier openings falls on a simple but often misunderstood tool: the Guard Opening Scale. Also known as “gotcha sticks,” Guard Opening Scales mimic the human hand and forearm. Over the past 70 years they’ve proven to be the most accurate means of ensuring any opening in a barrier guard will not allow a hazardous zone to be accessed.

HISTORY OF THE GUARD OPENING SCALE
The history of the Guard Opening Scale dates back to 1948. It was then that Liberty Mutual Insurance, joined with the Writing Committee for the ANSI B11.1 Safety Standard on Mechanical Power Presses, engineered a stair-step shaped measurement tool to determine guard-opening size vs. guard distance to the nearest Point of Operation hazard. A rash of injuries to mechanical power press operators who reached through barriers and suffered lacerations, amputations and crushed limbs prompted Liberty Mutual’s actions. Although Guard Opening Scales were first designed for point of operation guards on mechanical power presses, they are now often used on other machines as well.

Originally, the recommended dimensions used for the scale were based upon “average-size hands,” which at the time were a woman’s size 6 glove. ANSI incorporated these dimensions from Liberty Mutual into its 1971 revision of the ANSI B11.1 safety standard for mechanical power presses. In 1995, however, a study entitled “A Review of Machine-Guarding Recommendations” was conducted by Donald Vaillancourt and Stover Snook of Liberty Mutual Research to establish whether the 1948 drawings were consistent with current hand size data, in particular as the data relates to women and minorities who have become more prevalent in manufacturing. Vaillancourt and Snook suggested several important modifications including moving the glove size from a woman’s size 6 to a size 4. Drawings from the study have been adopted in several current ANSI B11-series safety standards for machine tools as well as in the ANSI/RIA R15.06 safety standard for industrial robots and robot systems. OSHA in Table O-10 of OSHA 29 CFR 1910.217 did not, on the other hand, officially adopt the drawings.

OSHA VS. ANSI GUARD OPENING SCALES
OSHA Compliance Officers are usually limited to using OSHA’s own scale, which is referenced by CFR 1910.217, Table 0-10. The ANSI scale is more likely to be used by Insurance Loss Control Engineers in manufacturing plants where smaller hand sizes tend to dominate the employee population. Let’s look at the differences in the two designs:


Note that the OSHA scale locks on the 3rd stair-step on the entrance side, and that the tip of the scale does not reach the die, meaning the test is “passed” for that opening size at that distance away. Also note that the ANSI scale locks on the last stair-step on the entrance side, and that the tip of the scale goes past the die, meaning that the test is “failed” for that opening size at that distance away. That problem can be fixed in one of two ways; move the guard a little further away from the die, or make the adjustable guard opening a little smaller, or some combination of those two.

USING A GUARD OPENING SCALE
A Guard Opening Scale is a two-dimensional representative of an average sized finger, hand and arm. Of course, the human body is not two-dimensional but three-dimensional, thus making its correct use critically important. Follow these simple instructions for proper measurements.

First, place the scaled side perpendicular to the smallest dimension in a hole in the barrier guard material and attempt to insert it towards the hazard. If properly designed, the barrier guard will stop the tip from accessing the hazard area. When multiple openings of various sizes exist in a barrier guard, each must be tested with the tool. The maximum guard opening that OSHA allows is a 6-inch opening at 31.5 inches away. For most people that’s armpit to fingertip. Also, the openings should always be measured empty, not with any material in place. This is based on the logic that personnel may put a hand through the guard opening without material taking up a portion of the space. Remember that Safety Inspectors won’t cut a plant operator any slack because the guard happens to be adjustable. Adjustable guard openings must be measured the same as fixed guard openings.

Please call 1-800-922-7533 or visit rockfordsystems.com for more information.

Safeguarding Mechanical Power Presses

Mechanical power presses (a.k.a. punch presses, stamping presses, flywheel presses), have existed in the U.S. since 1857. They were originally designed as either full-revolution, or part- revolution, both of which still exist, although the latter currently represents an estimated 90 percent of the roughly 300,000 mechanical power presses being used in the United States today.

This blog will address part-revolution presses only. These are often referred to as “air clutch” presses, made by dozens of manufacturers. The idea of safety for these machines has existed since 1922, when the first ANSI B11.1 Safety Standard was developed. The latest version, ANSI B11.1-2009 is the 10th update of that standard. This is generally considered to contain the “Best Safety Practices” for press users.

In the early 1970’s, OSHA promulgated a “machine specific regulation” for mechanical power presses, their CFR SubPart O, 1910.217. Very few changes have been made to that regulation since then. Keep in mind that OSHA’s 1910.217 Regulation was taken from ANSI B11.1 using a version that was freshly updated for OSHA in 1971. ANSI has updated their B11.1 four times since that time. Every update adds new, more stringent requirements than the previous version.

Although many companies have long since met the basic OSHA requirements for their presses, a significant number of those shops have yet to make updates to meet the latest ANSI B11.1 Standard. When OSHA regulations came 46 years ago, press control systems were primarily relay-logic systems, designed to meet OSHA’s initial requirement for “Control Reliability” and “Brake Monitoring.”

Press control systems manufactured in the mid 1980’s and beyond have been mostly solid-state, designed to meet the ANSI Standard concept for the “Performance of Safety Related Functions.” One of the advantages to solid-state controls are the features built-into them. Two of these are a: built-in “Stopping Performance Monitor” and built-in “Stop Time Measurement,” which prevents users from having to use a portable device to determine “Safety Distance” when applying Light Curtain and Two-hand Control devices.

Mechanical Power Presses require some combination of guards and/or devices to reduce or eliminate exposure to hazards at the “point of operation” where the dies close. Safeguarding alternatives include: Point-of-Operation Guards, Awareness Barriers, Light Curtains, and Two-Hand Controls.

1) Point-of-Operation Guards
Point-Of-Operation Guards are typically used for continuous operations where coil-stock feeds into the press as it operates in an uninterrupted mode of operation.

By OSHA’s definition, a guard must prevent people from reaching over, under, through, or around it. (OUTA is an acronym easy to remember; This guard keeps you “OUTA” here.) Guards must meet one of two measurement scales (the OSHA guard opening scale or the ANSI/CSA guard opening scale), to ensure that a small hand can’t reach far enough through any opening to get hurt.

To discourage misuse, hinged or sliding guard sections are often electrically interlocked, so that they remain in position (closed) during press operations. Without interlocks, movable sections can easily be left open, whether intentional or not, leaving Operators and others in the area unprotected.

Guard Interlocks are attached to hinged or moving guard sections, since access to the point-of-operation is most often made through those openings. Interlock attachment is best accomplished with tamper-resistant fasteners to discourage cheating the switch.

Many older guards use simple lever-arm or push-button switches. Not only are these switches easy to cheat with tape or wire, they are also spring-operated, leaving them subject to failure it the spring breaks. Newer switches are free of springs, and use actuators with a unique geometry, making them much more difficult to defeat.

2) Awareness Barriers (for low-level hazards only)
Another common method of safeguarding on coil-fed presses is an “Awareness Barrier” (A/B). They should completely surround press auxiliary equipment with railings, chains, or cables, suspended on floor stations. Although they don’t provide the same level protection as a guard, they do help to limit access to hazards on auxiliary equipment like coil-payoffs, feeds, straighteners, etc.

Awareness Barriers are considered superior to just a yellow line on the floor, because to get beyond the A/B requires an intentional act and some physical contact with them. This means the person is well aware that they are entering a hazard area, contrary to their safety training. Auxiliary equipment may also require that ingoing rolls are covered to prevent entanglement with long hair or loose clothing.

Awareness barriers should also have several Danger or Warning signs attached to them specifying what the hazards are in going beyond the A/Bs. Examples of sign verbiage might include: moving coil stock, ingoing pinch points, sharp edges, tripping hazard, etc.

3) Light Curtains
Light Curtains have been around since the mid-1950’s. They consist of a vertically mounted transmitter and receiver with closely spaced beams of infra-red light, creating a flat sensing-field. When fingers, hands, or arms that reach through that sensing-field, the press cycle is prevented or stopped to avoid operator injury.

One of the reasons that presses make a good application for light curtains is that they can be stopped mid-cycle very quickly. Light curtains can be used for either single or continuous applications. The only thing that light curtains don’t provide is “impact protection” should something break in the point of operation and be ejected in the operator’s direction. Where that’s an issue, poly carbonate shields or guards may be appropriate.

Like any safeguarding device, light curtains should be “function-tested” before every operating shift to ensure that they are continuing to provide protection. Make/model specific “function-test procedures” are usually available on each light curtain manufacturer’s website.

4) Two-Hand Controls
Two-Hand Controls are considered a safer means of cycling a press than a foot-switch because both hands must be in a safe position to use them. When cycling a press with a foot switch, hands can be anywhere. When operating a press in the single-cycle mode of operation, it’s possible to use a two-hand control as a safeguarding device as well. This requires that they meet a list of rules in both OSHA and ANSI.

Ten of the basic requirements for a two-hand control being used as a safeguarding device (in the single-cycle mode of operation) include:
1) protection from unintended operation
2) located to require the use of both hands (no elbow & finger tips)
3) concurrently operated (actuation within half-second of each other)
4) holding-time during the downstroke (hazardous portion of cycle)
5) anti-repeat (push and release both actuators for each single cycle)
6) interrupted stroke protection (for all operating stations)
7) separate set of two-hand controls for each operator
8) mounted at a calculated “Safety Distance” from nearest hazard
9) control system to meet “Performance of Safety Related Functions”
10) Stopping Performance Monitor is also required

When running high-production operations, don’t forget to consider ergonomics when choosing and installing two-hand controls. Several manufacturers of low-force and no-force actuators are on the market.

Also required by OSHA on Mechanical Power Presses is an electrically interlocked “Safety Block” whenever dies are being adjusting or repaired while they are in the press. The interlock is required because safety blocks are very seldom designed to hold the full working-force of the press (please refer to our Die Safety Blocks blog for additional information).

Mechanical Power Presses require two types of OSHA inspections:
1) Periodic and regular (typically quarterly) inspections of the press parts, auxiliary equipment, and safeguards . . . (don’t forget to document)
2) Weekly inspections of; clutch/brake mechanism, anti-repeat feature . . . along with other items (don’t forget to document)

OSHA requires training (in 1910.217) for anyone who cares for, inspects, maintains, or operates mechanical power presses.

ANSI B11.1-2009, requires training for “all (people) associated with press production systems, including operators, die setters, maintenance personnel, supervisors, which must also include (OSHA) 1910.147 Lockout/Tagout.”

Please call 1-800-922-7533 or visit rockfordsystems.com for more information.