I, COBOT

I, COBOT: The Rise of Industrial Robotics and the Need for Employee Safeguarding

In general, OSHA’s view on robot safety is that if the employer is meeting the requirements of ANSI/RIA R15.06, the manufacturer has no issues.

Tech executive and billionaire entrepreneur Elon Musk recently took to Twitter calling for the regulation of robots and Artificial Intelligence (AI), saying their potential, if left to develop unchecked, threatens human existence. Google, Facebook, Amazon, IBM, and Microsoft joined in with their own dire forecasts and have jointly set up the consortium “Partnership on AI to Benefit People and Society” to prevent a robotic future that looks not unlike the “Terminator” movie series. National media heightened panic by broadcasting a video released by a cybersecurity firm in which a hacked industrial robot suddenly begins laughing in an evil, maniacal way and uses a screwdriver to repeatedly stab a tomato. The video demonstrated how major security flaws make robots dangerous, if not deadly.

Is all this just media hyperbole, or are robots really that hazardous to our collective health? Are productivity-driven manufacturers unknowingly putting employees at risk by placing robots on the plant floor? What kind of safeguarding is required? Should robots be regulated, as Elon Musk believes?

‘Dumb’ Machines vs. Cobots
Until now, the robots used in manufacturing have mostly been “dumb” robots—that is, room-sized, programmed machinery engineered to perform repetitive tasks that are dirty, dangerous, or just plain dull. Typical applications would include welding, assembly, material handling, and packaging. Although these machines are very large and certainly have enough power to cause injuries, the instances of employees actually being injured by robots is relatively rare. In fact, during the past three decades, robots have accounted for only 33 workplace deaths and injuries in the United States, according to data from the Occupational Safety and Health Administration (OSHA).

So, you might ask, why the sudden uproar when there are already 1.6 million industrial robots in use worldwide? Most of the clamor behind calls for regulation stems from a new generation of robots called “cobots” (collaborative robots) that are revolutionizing the way people work. Unlike standard industrial robots, which generally work in cages, cobots have much more autonomy and freedom to move on their own, featuring near “human” capabilities and traits such as sensing, dexterity, memory, and trainability.

The trouble is, in order for cobots to work productively, they must escape from their cages and work side by side with people. This introduces the potential for far more injuries. In the past, most injuries or deaths happened when humans who were maintaining the robots made an error or violated the safety barriers, such as by entering a cage. Many safety experts fear that since the cage has been all but eliminated with cobots, employee injuries are certain to rise.

Because cobots work alongside people, their manufacturers have added basic safety protections in order to prevent accidents. For instance, some cobots feature sensors so that when a person is nearby, the cobot will slow down or stop whatever function it is performing. Others have a display screen that cues those who are nearby about what the cobot is focusing on and planning to do next. Are these an adequate substitute for proven safeguarding equipment? Only time will tell.

There is another, more perilous problem with robots in general: Robots are basically computers equipped with arms, legs, or wheels. As such, robots are susceptible to being hacked. But unlike with a desktop computer, when a robot is hacked it has the ability to move around. For instance, a disgruntled ex-employee could hack into a robot and re-program it to harm people and destroy property. The more functionality, intelligence, and power a robot has, the bigger its potential threat.

Types of Injuries
OSHA lists four types of accidents resulting from robot use in the Technical Manual “Industrial Robots and Robot System Safety” (Section IV: Chapter 4).
1. Impact or collision accidents. Unpredicted movements, component malfunctions, or unpredicted program changes related to the robot’s arm or peripheral equipment could result in contact accidents.
2. Crushing and trapping accidents. A worker’s limb or other body part can be trapped between a robot’s arm and other peripheral equipment, or the individual may be physically driven into and crushed by other peripheral equipment.
3. Mechanical part accidents. The breakdown of the robot’s drive components, tooling or end-effector, peripheral equipment, or its power source is a mechanical accident. The release of parts, failure of gripper mechanism, or the failure of end-effector power tools (e.g., grinding wheels, buffing wheels, deburring tools, power screwdrivers, and nut runners) are a few types of mechanical failures.
4. Other accidents. Other accidents can result from working with robots. Equipment that supplies robot power and control represents potential electrical and pressurized fluid hazards. Ruptured hydraulic lines could create dangerous high-pressure cutting streams or whipping hose hazards. Environmental accidents from arc flash, metal spatter, dust, electromagnetic, or radio-frequency interference also can occur. In addition, equipment and power cables on the floor present tripping hazards.

Robot Safety Regulations
Robots in the workplace are generally associated with machine tools or process equipment. Robots are machines, and as such, must be safeguarded in ways similar to those presented for any hazardous remotely controlled machine, falling under the OSHA General Duty Clause (5)(a)(1), which requires employers provide a safe and healthful workplace free from recognized hazards likely to cause death or serious physical harm. Also applicable are OSHA 1910.212 (a)(1) “Types of Guarding” and 1910.212 (a)(3)(ii) “The point of operation of machines whose operation exposes an employee to injury shall be guarded.”

Various techniques are available to prevent employee exposure to the hazards that can be imposed by robots. The most common technique is through the installation of perimeter guarding with interlocked gates. A critical parameter relates to the manner in which the interlocks function. Of major concern is whether the computer program, control circuit, or the primary power circuit is interrupted when an interlock is activated. The various industry standards should be investigated for guidance; however, it is generally accepted that the primary motor power to the robot should be interrupted by the interlock.

In general, OSHA’s view on robot safety is that if the employer is meeting the requirements of ANSI/RIA R15.06, Industrial Robots and Robot Systems—Safety Requirements, then the manufacturer has no issues. For guidance on how to select and integrate safeguarding into robot systems, refer to the Robotic Industries Association’s Technical Report: RIA TR R15.06-2014 for Industrial Robots and Robot Systems—Safety
Requirements and Safeguarding.

Published by the American National Standards Institute (ANSI) and Robotic Industries Association (RIA), ANSI/RIA R15.06 is a consensus standard to provide guidance on the proper use of the safety features embedded into robots, as well as how to safely integrate robots into factories and work areas. The latest revision of the standard, ANSI/RIA R15.06-2012, references for the first time ISO 10218-1 & 2 to make it compliant with international standards already in place in Europe. Part 1 of ISO 10218 details the robot itself; Part 2 addresses the responsibilities of the integrator.

There are also new requirements in ANSI/RIA R15.06-2012 for collaborative robots; in this case, ISO 10218 and the ISO/TS 15066 Technical Specification. This standard clarifies the four types of collaboration: Safety Monitored Stop, Hand Guiding, Speed & Separation Monitoring, and Power & Force Limiting. ISO/TS 15066 holds key information, including guidance on maximum allowable speeds and minimum protective distances, along with a formula for establishing the protective separation distance and data to verify threshold limit values for power and force limiting to prevent pain or discomfort on the part of the operator.

The requirement for risk assessments is one of the biggest changes in the new RIA standard. The integrator, or the end user if they are performing the job of an integrator, now must conduct a risk assessment of each robotic system and summarize ways to mitigate against these risks. This may involve procedures and training, incorporating required machine safeguarding, and basic safety management. Risk assessments calculate the potential severity of an injury, the operator’s exposure to the hazard, and the difficulty in avoiding the hazard to arrive at a specific risk level ranging from negligible to very high.

In the future, as cobot use rapidly expands throughout industry, regulation of this technology will grow more focused and specific. Consider this: Although cobots currently represent only 3 percent of all industrial robots sold, they are projected to account for 34 percent of the industrial robots sold by 2025, a market that itself is set to triple in size and dollar volume over that period.

Conclusion
The next 10 years will be pivotal for American manufacturing, and success largely depends on companies’ ability to navigate the transition from traditional manufacturing to Industry 4.0-style automation and the widespread use of robots. While few people have as dire a view as Elon Musk on the subject, it is critical that employee safety is not lost in the excitement as we shepherd robots out of their cages to work hand in hand with humans.

Lack of Machine Guarding Again Named to OSHA’S Top 10 Most Cited Violations List

Every year around this time, the awards season kicks off with the Emmys, Golden Globes and the grand daddy of them all, the Oscars, eagerly announcing their lists of nominations. At the same time — and on a far more somber note — another roll call is issued, this one from the Occupational Safety & Health Administration (OSHA). Unlike Hollywood’s awards celebrations, however, no one wants to be nominated for OSHA’s Top Ten Most Cited Violations list, let alone take home the top prize.

OSHA revealed its 2017 Top 10 list at the National Safety Congress & Expo in the Indiana Convention Center. The top ten are:

1. Fall Protection – (1926.501): 6,072 violations
2. Hazard Communication (1910.1200): 4,176 violations
3. Scaffolding (1926.451): 3,288 violations
4. Respiratory Protection (1910.134): 3,097 violations
5. Lockout/Tagout (1910.147): 2,877 violations
6. Ladders (1926.1053): 2,241 violations
7. Powered Industrial Trucks (1910.178): 2,162 violations
8. Machine Guarding (1910.212): 1,933 violations
9. Fall Protection – Training Requirements: 1,523 violations
10. Electrical – Wiring Methods (1910.305): 1,405 violations

While reviewing the list, it is important to remain aware that the Federal Occupational Safety & Health Administration (OSHA) is a small agency. When tallied up to include its state partners, OSHA only has 2,100 inspectors who responsible for the health and safety of 130 million American workers, employed at more than 8 million work sites. This translates to about one compliance officer for every 59,000 workers. As a result, some serious injuries are not reported and thousands of potential violations go without citation or fines. In fact, numerous studies have shown that government counts of occupational injury are underestimated by as much as 50 percent. Employers are required to record all injuries meeting the OSHA’s ‘recordable injury’ criteria (except minor first-aid cases) on the OSHA 300 Log, and those meeting the ‘reportable’ criteria (e.g., hospitalizations or deaths), are to be reported to OSHA immediately, or within 24 hours of occurrence, as per the criteria defined in 29 CFR 1904. But it doesn’t mean all of them do.

MACHINE (UN)SAFEGUARDING IN TOP 10 MOST CITED VIOLATIONS
The absence of required machine safeguarding remains a perennial member of OSHA’s Top 10 Most Cited Violations, and 2017 was no exception. It was named number eight on the list with a total of 1,933 violations. These violations refer to OSHA 1910.212 for failing to have machines and equipment adequately guarded. Any machine part, function, or process that might cause injury should be safeguarded. When the operation of a machine may result in a contact injury to the operator or others in the area, the hazard should be removed or controlled.

A lack of machine safeguarding also held the dubious distinction of making the list of OSHA’s ten largest monetary penalties for the year — not once but four times. In fact, the largest proposed monetary penalty, a staggering $2.6 million (USD), arose from an incident where a worker was crushed to death while clearing a sensor fault in a robotic conveyor belt. OSHA alleges that the company failed to use energy control procedures to prevent robotic machinery from starting during maintenance. The manufacturer also was cited for exposing employees to crushing and amputation hazards as a result of improper machine guarding, plus failing to provide safety locks to isolate hazardous energy.

Despite these headline fines, the repercussions for employers putting workers in harm’s way remain small under the 1970 Occupational Safety and Health Act. The average federal fine for a serious workplace safety violation was $2,402 in fiscal year 2016, according to the most recent report by the AFL-CIO. And the median penalty for killing a worker was $6,500.

According to the most recent Bureau of Labor Statistics data, manufacturing plants reported approximately 2,000 accidents that led to workers suffering crushed fingers or hands, or had a limb amputated in machine-related accidents. The rate of amputations in manufacturing was more than twice as much (1.7 per 10,000 full-time employees) as that of all private industry (0.7). The bulk of these accidents occurred while removing jammed objects from a machine, cleaning or repairing the machine, or performing basic maintenance. These injuries were all largely preventable by following basic machine safeguarding precautions. Rockford Systems is committed to helping organizations reduce injuries and fatalities due to a lack of or non-compliant machine safeguarding. By creating a culture of safety in the workplace, Rockford Systems can help plant managers significantly reduce the number of on-the-job injuries and fatalities that occur annually, plus guard against hefty fines, lost production and increased insurance premiums.

Which leads to the question… “Where do we begin?”

TRAINING AND EDUCATION

Ignorantia juris non excusat (“ignorance of the law excuses not”). Recognizing that education is key to safety, Rockford Systems has offered its Machine Safeguarding Seminars for more than two decades. Thousands of safety professionals have attended the seminars from industries as diverse as aerospace and metal fabrication, to government and insurance.

Held ten times a year at our Rockford, Illinois headquarters, the 2.5 day seminars address key topics in safeguarding with a focus on OSHA 29 CFR and ANSI B-11 standards as they relate to specific machine applications and production requirements. Safeguarding equipment, both old and new, is not only explained in depth in the classroom, but demonstrated under power on the shop floor. Most of these machines are equipped with more than one type of safeguarding product so that attendees can see how different guards and devices can be applied.

Roger Harrison, Director of Training for Rockford Systems and an industrial safeguarding expert with over 25,000 hours of training experience, conducts the Machine Safeguarding Seminar.

>Another valuable educational resource is OSHA-10 General Industry and OSHA-30 General Industry training courses, both of which cover machine guarding. All of our training can be provided at your site, if preferred. To learn more about the Rockford Systems training curriculum, please visit https://www.rockfordsystems.com/seminars/

Rockford Systems also provides a variety of FREE machine safeguarding resources for your organization. Please visit our RESOURCES page to find videos, blogs, quick reference sheets, and more or visit our YouTube channel to download past webinar recordings.

ASSESSMENTS
If your organization is interested in safeguarding solutions, consider a Machine Risk Assessment or Machine Safeguarding Assessment as the critical first step in any machine guarding process as outlined in ANSI B11. Most assessments, but not all, follow the basic steps outlined below.

Step 1 – Provide Machine List
To get started, please provide Rockford Systems a list of all machines (manufacturer, model number, and machine description of each machine) to be assessed. This machine list is needed to determine the estimated resource requirement for the onsite audit. Upon receipt of your machine list, an Assessment Proposal will be provided, generally within 24 hours of receipt. Please email your machine list and any machine photos (optional) to sheryl.broers@rockfordsystems.com.

Step 2 – Schedule Onsite Visit
During the assessment, a machine safeguarding specialist will visit your site and conduct a complete audit of all machines identified on the list and evaluate their compliance in five guarding areas (Safeguards, Controls, Disconnects, Starters, and Covers). The assessment is based on OSHA 1910.212 General Requirements (a)(1), ANSI B11 Safety Standards for Metalworking, ANSI/RIA R15.06-2012 Safety Standards for Industrial Robots, and NFPA 79. If Rockford Systems, LLC has additional specific safeguarding requirements above and beyond OSHA 1910.212 and ANSI B11, please provide them before the site visit and we will incorporate them into the assessment.

Also, during the assessment, we may request copies of electrical, pneumatic and/or hydraulic schematics and operator manuals for specific machines. This information is needed for our Engineering Department to review the control circuit for electrical compatibility of equipment being offered, to verify control reliability of the control circuit, to determine interfacing requirements of suggested equipment. If requested, this information would be needed before advancing to Step 3 below.

Step 3 – Receive Compliance Report and Safeguarding Project Proposal
Upon completion of the assessment, a Compliance Report and Safeguarding Project Proposal will be provided to that identifies where each machine is in, or not in, compliance with the above stated regulations and standards. Where not in compliance, we will suggest guarding solutions to bring the machines into compliance, along with associated costs and timeframes.

We look forward to assisting your organization with its safeguarding needs. A team member will call you within 24 hours to further discuss your needs and applications. We are here to help businesses large and small address machine safety challenges and to remove the burden of managing the growing legal complexity of OSHA, ANSI and NFPA requirements from simple turnkey solutions to build-to-spec customized solutions.

Please contact sheryl.broers@rockfordsystems.com or call 1-815-874-3648 (direct) to get started on an assessment today.

PRODUCTS
If you are looking for Machine Safeguarding Products, please visit our PRODUCTS page that offers over 10,000 safeguarding solutions for drill presses, grinders, lathes, milling machines, press brakes, power presses, radial arm drills, riveters and welders, robots, sanders, saws and more.

RETURN ON INVESTMENT
Not sure if the investment in machine safeguarding provides a return on the investment (ROI), it absolutely does and we can help you calculate it. Please read our detailed blog post on this topic.

For more information on how avoid machine injuries and fatalities, please visit www.rockfordsystems.com.

Press Brake Safeguarding To Prevent Injuries

Including In-Depth Analysis of Light Curtains vs. Laser AOPD

Press brakes are unforgiving machines and a common source of workplace amputations of hands, fingers and arms. United States Department of Labor statistics indicate an average of 368 instances of amputations annually from press brake accidents. And these are only the reported accidents.

WHY ARE PRESS BRAKES SO DANGEROUS?
The primary reasons are access to the point of operation at the front of the machine, as well as reaching around the safety device to get to the point of operation at the ends of the machine. In addition, there are pinch points and hazardous motion created by the back-gauge system.

But the dangers don’t stop there. However well intentioned, fabricators often employ lower cost, used or refurbished press brakes where the primary controls and/or condition of the machine and safety system may be suspect. Plus, original equipment manufacturers (OEM’s) generally consider the point of operation aspect of the press brake safety system to be the end-user’s responsibility. The end-user may assure, incorrectly, that the machinery arrived into the shop ready for commissioning. Lastly, press brakes have always been operator intensive, sometimes involving multiple operators, and operator behavior is not always predictable. That is why it is good practice to make one operator the leader of the crew.

OSHA/ANSI SAFETY REGULATIONS
OSHA’s machinery and machine guarding regulations (29 CFR 1910 Subpart O) require one or more guarding methods to protect employees from exposure to hazardous machine energy during the operation of press brakes. There isn’t a great deal of detail to the OSHA regulations so fabricators in search of answers would be better served by turning to ANSI B11.3-2012 which covers safeguarding of power press brakes. The B11.3 adopted EN 12622 (European standard), giving it even more specific instructions to follow and minimizing any vague, grey areas.

ANSI B11.3 is the only safety system standard specifically applicable to power press brakes used in America, and it excludes mechanical power presses; hydraulic power presses, hand brakes; tangent benders; apron brakes; and other similar types of metal bending machines. It discusses hazards associated with the point of operation at length and identifies alternative guards and devices. For example, the ‘close proximity point of operation AOPD’ safeguarding devices, which we will discuss later in this blog, and a means of safeguarding referred to as ‘Safe Speed.’ We should note that ANSI B11.0-2015 recommends risk assessments of press brakes among other equipment, offered by Rockford Systems.

PRESS BRAKE PROTECTION OPTIONS
Today, there several ways to safeguard a press brake, some better than others. All have advantages and drawbacks.

The most basic type of safeguarding is a fixed and interlocked barrier guard coupled with two-hand controls. This is not a functional solution for fabricators as a work piece is hand held in close proximity to the point of operation during the braking process and can potentially whip up as bending is taking place.

Another approach are pull backs and restraints. Both are restrictive and have limitations and for that reason, operators dislike them. Both devices shackle the operator to a machine and restricts mobility. Yet another approach is the two-hand down/foot-through device. In some cases, this will work. However, this method raises ergonomic issues and it is very slow. Not what you want in a busy, production-driven fabrication shop.

SHEDDING LIGHT ON SAFETY
A modern light curtain is a photoelectric presence-sensing device that protects against access into hazardous points and areas of the press brake. They can range from very compact to larger, more robust and resistant models that can withstand demanding ambient conditions. We should note that a stop-time measurement (STM) device is needed to calculate the safety distance on a regular basis, just as it is needed with two-hand controls.

Safety Light Curtains safeguard personnel using an LED transmitter and receiver. Any interruption of the plane of light by an object equal to/or larger than the “minimum object sensitivity” initiates an output signal. That could be a hand or a finger or a misplaced tool that will either cause the machine to stop or prevent a cycle until the blockage is removed. The operator must be outside the protected area through the entire stroke of the press brake ram. The safety distance between the light curtain and the machine depends on the application, the type of light curtain, and the machine’s stopping performance.

OSHA has a set of regulations for light curtains that are listed here:
1. The machine must be able to stop the movement of the ram anywhere in the stroke.
2. The stopping time of the ram must be known.
3. The stopping time of the ram must be monitored for deviation in stopping time on each stroke.
4. The minimum distance the light curtains can be located to the pinch point must be known.
5. The light curtains must be control reliable.
6. The machine stop circuit with which the light curtains are interfaced, must be control reliable.
7. The light curtains must be self checking for proper operation on each stroke.
8. There should be no easy way to disable the safety system without special tools.
9. If the safety system is disabled there should be a clear indication that it is disabled.
10. The operator and setup person should be properly trained in the operation of the safety system.

LASER FOCUSED ON SAFETY
The newest entry into the press brake safety category is probably its most revolutionary, the Laser Active Optic Protective Device, more commonly referred to as the AOPD. Four manufacturers now make AOPD systems including LazerSafe™ a partner of Rockford Systems. Inclusion of Laser AOPD technology in the B11.3 is a welcome addition to the standard that now gives press brake manufacturers, dealers and users a clear guideline to implementing this technology safely. (B11.3 sub-clause 8.8.7 – Close Proximity Point of Operation AOPD Safeguarding Device)

The biggest advantage of AODP is that operators can hand-hold piece parts up close to the dies, while using a foot-switch to actuate the machine-cycle, which is almost impossible to safely accomplish using a light curtain. Another advantage is for larger piece parts with tall side-legs that would be difficult when using a vertically mounted light curtain for safeguarding. For those familiar with using light curtains, those two situations often require excessive “Channel Blanking” which “yes” allows for production of those parts, but often lets the hands and fingers to reach too close to the dies.

LIGHT CURTAINS or AODP?
Laser AOPD protects the point of hazard whereas light curtain systems restrict operator access to the point of hazard. Operators can hand-hold piece parts up close to the dies with AOPD, while using a foot-switch to actuate the machine-cycle. This is virtually impossible to safely accomplish using a Light Curtain. But that doesn’t make AODP perfect for every application. AOPD systems are well suited for applications such as box bending, bending with flanges, or where light curtain effectiveness is diminished due to excessive blanking or muting.

There are advantages and drawbacks to both systems. And we would stress that it is not an “either-or” situation between light curtains and AODP. The two can be used, and often are, on the same machine. Light curtains provide for die configurations that the AODP won’t handle like compound bends, for instance. This is done to ensure that safeguarding is provided for all die setups. For die setups where neither light curtains or AOPD can offer effective safeguarding, but the part can be fixture in place, that is it does not require hand-support, a two-hand control can be used for safeguarding.

The diagram below sums up the two systems.

The Alternative Universe of Lockout/Tagout

On the surface, at least, machine lockout/tagout (LOTO) appears simple: Identify and isolate energy sources, lock and tag, and perform the procedure that needs to get done.

Simple, right? Wrong.

When energy is required to complete machine diagnostics or set-up work, or when a minor maintenance job is going to throw production hours behind schedule, LOTO becomes something far more complex than a textbook explanation.

Once you understand its intricacies, it is understandable why LOTO, as outlined in OSHA standard 29 CFR 1910.147 ”The Control of Hazardous Energy (Lockout/Tagout), has become an everyday struggle for many safety personnel. And why LOTO ranks among OSHA’s top ten violations, year after year. It is also understandable why industry is fast embracing the concept of “Alternative Measures”.

OSHA REQUIREMENTS
OSHA 29 CFR 1910.147 requires employees to remove power sources to a machine that could otherwise result in personal injury if energy were unintentionally released during maintenance or service. It clearly states facilities are responsible for establishing a written program covering how required safety measures will be applied. This includes provisions for developing machine-specific energy control procedures, training authorized workers to protect themselves with lockout/tagout, and for periodic inspections of the adequacy of the written procedures, along with the performance of personnel applying them.

As comprehensive as LOTO may be, it can be very time-intensive, often requiring longer than is required to finish the actual maintenance task on the machine. Production comes to a halt, resulting in the day’s production numbers potentially being missed. This becomes even more frustrating when the maintenance task is one that must be implemented several times a day. Loss of time and profits create a strong incentive to bypass LOTO to carry out repetitive machine tasks. However, it still violates OSHA requirements and puts workers in serious danger.

Thankfully, OSHA 29 CFR 1910.147 also outlines “Alternative Protection Measure” (APM) procedures that can result in increased efficiency without compromising the safety of the operation. This exception is also referred to as the “minor servicing exception”. Designed for machine tasks that demand frequent repetitive access, i.e., clearing a jam on a conveyor or a minor tool change, Alternative Measures do not require that power sources be completely cut off. Examples of Alternative Methods technology may include key-controlled locks, control switches, interlocked guards, remote devices and disconnects. It can also mean locking out just a section of a piece of equipment, rather than the entire machine.

ANSI REQUIREMENTS
The newest ANSI standard, ANSI/ASSE Z244.1 (2016) The Control of Hazardous Energy – Lockout, Tagout and Alternative Methods, agrees with OSHA in that workers should be protected from injury due to unexpected equipment startup or release of potentially hazardous energy. However, the ANSI committee did not try to align fully with every historic OSHA compliance requirement. Instead, the new standard gives expanded guidance beyond OSHA’s regulatory limitation to tasks that are “routine, repetitive and integral to production operations”.

ANSI makes it very clear that LOTO shall be used unless the user can demonstrate that a well-established alternative method will provide effective protection. In situations where the task is not well understood or risk assessed, lockout shall be the default protective measure applied to control machinery or processes. Section 8.2.1 of ANSI/ASSE Z244.1 (2016) specifies that alternative methods shall only be used after hazards have been assessed and documented through the application of a Practicability (or Justification) Study to determine that the techniques used will result in a negligible risk or no risk for sudden start up. Following the Hierarchy of Control model, ANSI/ASSE Z244.1 (2016) provides detailed guidance on if, when, and how a range of alternative control methods can be applied to result in equal or improved protection for people performing specific tasks. In addition, alternative risk reduction methodology is covered in detail specific to a number of new technologies including the Packaging, Pharmaceutical, Plastics, Printing, and Steel Industries; Semiconductor and Robotic Applications and others challenged by the current regulatory limitations.

Since the two standards are somewhat conflicting it is best to review ANSI first to help identify discrepancies that may not meet federal minimum regulations.

At this point, it would be appropriate to underscore that LOTO provides the greatest level of protection and, whenever possible, it should be utilized to protect employees from hazardous energy. In other words, inconvenience alone is not an acceptable excuse to use alternative measures. In addition, CFR 1910.147 clearly states that an allowable alternative measure must provide the same or greater level of protection as LOTO. Otherwise, it is considered noncompliant and therefore insufficient to replace LOTO.

By using standard safety-rated devices, such as interlock gates and e-stop buttons, a plant manager can achieve safe, reliable machine access that replaces standard LOTO procedures without violating OSHA requirements. Implementing alternative procedures to ensure equivalent protection for specific tasks can enhance productivity without endangering employees. But those procedures — and their benefits — come with strings attached, requiring a thorough understanding of the latest OSHA and ANSI standards.

Detect-A-Finger® Prevents Welding and Riveting Injuries

According to the Bureau of Labor Statistics, more than 5,000 American manufacturing workers suffer injuries involving amputation or limb loss every single year. In all, amputations rank in OSHA’s top three serious workplace injuries. The Detect-A-Finger® drop-probe device is designed to prevent a riveter, welder or other small machine from cycling if it encounters fingers in the point-of-operation area, therefore preventing contact between the operator and dangerous moving parts.

Simplicity is the key to Detect-A-Finger’s success. Whenever an operator initiates a machine cycle, typically through an electric foot switch, the Detect-A-Finger sensing probe is automatically released, ensuring that safeguarding can not be deactivated or overlooked by the operator. If the probe detects anything more than the material thickness, it halts the machine from cycling. However, if an operator’s fingers or hands have not entered the point-of-operation area, the sensing probe will drop into its preset position, and the Detect-A-Finger’s control unit will allow the machine to cycle to maintain ongoing machine productivity and performance.

With its compact design, Detect-A-Finger easily mounts on most machines, regardless of brand, providing fabricators with an invaluable way to enhance both safety and productivity. Depending on space and preference, the drop probe assembly can be mounted on either the left or right side of a machine, while the head and control unit are normally mounted on the machine frame or custom-fabricated brackets. The aluminum probe rod is shaped to fit around the tooling, allowing parts to be formed safely at high speed to achieve maximum output.

Protection For Most Machinery
Accidents occur on all types of manufacturing equipment, which is why Rockford Systems offers its proven Detect-A-Finger system to safeguard virtually every machine found on a plant floor.

The RKC-000 Detect-A-Finger model is for smaller machines, including riveters, eye letters, stalkers, staplers, crimpers, and fastening and assembly machines. Available now online for $868.00 (USD), this version is ideal for retrofitting machines to meet new safety standards.

The RKC-500 Detect-A-Finger model is exclusively for welders. The unique design of its sensing probe module allows it to be attached to a welder arm, whether it is fixed or moving. Depending on the type of welder, a single-stage or a two-stage foot switch may be required. It may also be applied to mechanical foot pedal-type welders, although the mechanical pedal must be removed and replaced with an air cylinder. The RKC-500 is available for $1,053.00 (USD).

The DAF-100 Detect-A Finger model is the premium version for both riveters and welders. Featuring an adjustable stroke up to four-inches, it comes with the control box, drop-probe assembly, aluminum sensing probes, and other necessary components. The DAF-100 is available for $1,998.00 (USD).

All Rockford Systems Detect-A-Finger versions are designed for compliance with OSHA 29 CFR, Subpart 0, 1910.212 general requirements for all machines.

How To Use a Guard Opening Scale

Point-of-operation barrier guards are essential safeguarding equipment for hazardous industrial processes and machinery such as presses, pumps, motors and drills. When properly installed the barriers prevent a person from placing any part of their body into the point of operation by reaching through, over, under or around the guards to access a hazard. However, because barrier guards are typically constructed out of materials such as wire mesh, expanded metal, rods, or hairpins, most have openings that present the potential for injuries if a person reached through them. As a result, whether the guard is fixed, adjustable, movable, or interlocked, any openings must be measured for compliance with Table O-10 of OSHA 29 CFR 1910.217 (Mechanical Power Presses), current ANSI/CSA standards, or International standard ISO 13857 to determine the safe distance from the hazard.

The critical role of measuring barrier openings falls on a simple but often misunderstood tool: the Guard Opening Scale. Also known as “gotcha sticks,” Guard Opening Scales mimic the human hand and forearm. Over the past 70 years they’ve proven to be the most accurate means of ensuring any opening in a barrier guard will not allow a hazardous zone to be accessed.

HISTORY OF THE GUARD OPENING SCALE
The history of the Guard Opening Scale dates back to 1948. It was then that Liberty Mutual Insurance, joined with the Writing Committee for the ANSI B11.1 Safety Standard on Mechanical Power Presses, engineered a stair-step shaped measurement tool to determine guard-opening size vs. guard distance to the nearest Point of Operation hazard. A rash of injuries to mechanical power press operators who reached through barriers and suffered lacerations, amputations and crushed limbs prompted Liberty Mutual’s actions. Although Guard Opening Scales were first designed for point of operation guards on mechanical power presses, they are now often used on other machines as well.

Originally, the recommended dimensions used for the scale were based upon “average-size hands,” which at the time were a woman’s size 6 glove. ANSI incorporated these dimensions from Liberty Mutual into its 1971 revision of the ANSI B11.1 safety standard for mechanical power presses. In 1995, however, a study entitled “A Review of Machine-Guarding Recommendations” was conducted by Donald Vaillancourt and Stover Snook of Liberty Mutual Research to establish whether the 1948 drawings were consistent with current hand size data, in particular as the data relates to women and minorities who have become more prevalent in manufacturing. Vaillancourt and Snook suggested several important modifications including moving the glove size from a woman’s size 6 to a size 4. Drawings from the study have been adopted in several current ANSI B11-series safety standards for machine tools as well as in the ANSI/RIA R15.06 safety standard for industrial robots and robot systems. OSHA in Table O-10 of OSHA 29 CFR 1910.217 did not, on the other hand, officially adopt the drawings.

OSHA VS. ANSI GUARD OPENING SCALES
OSHA Compliance Officers are usually limited to using OSHA’s own scale, which is referenced by CFR 1910.217, Table 0-10. The ANSI scale is more likely to be used by Insurance Loss Control Engineers in manufacturing plants where smaller hand sizes tend to dominate the employee population. Let’s look at the differences in the two designs:


Note that the OSHA scale locks on the 3rd stair-step on the entrance side, and that the tip of the scale does not reach the die, meaning the test is “passed” for that opening size at that distance away. Also note that the ANSI scale locks on the last stair-step on the entrance side, and that the tip of the scale goes past the die, meaning that the test is “failed” for that opening size at that distance away. That problem can be fixed in one of two ways; move the guard a little further away from the die, or make the adjustable guard opening a little smaller, or some combination of those two.

USING A GUARD OPENING SCALE
A Guard Opening Scale is a two-dimensional representative of an average sized finger, hand and arm. Of course, the human body is not two-dimensional but three-dimensional, thus making its correct use critically important. Follow these simple instructions for proper measurements.

First, place the scaled side perpendicular to the smallest dimension in a hole in the barrier guard material and attempt to insert it towards the hazard. If properly designed, the barrier guard will stop the tip from accessing the hazard area. When multiple openings of various sizes exist in a barrier guard, each must be tested with the tool. The maximum guard opening that OSHA allows is a 6-inch opening at 31.5 inches away. For most people that’s armpit to fingertip. Also, the openings should always be measured empty, not with any material in place. This is based on the logic that personnel may put a hand through the guard opening without material taking up a portion of the space. Remember that Safety Inspectors won’t cut a plant operator any slack because the guard happens to be adjustable. Adjustable guard openings must be measured the same as fixed guard openings.

Please call 1-800-922-7533 or visit rockfordsystems.com for more information.

Press Brake Safeguarding Basics

Press Brakes are currently a hot topic in the “Machine Safeguarding” arena. OSHA regulations consider press brakes to be a 1910.212 machine, saying to the employer; “one or more methods of machine guarding shall be provided to protect the operator and other employees in the machine area from hazards such as those created by point of operation, in-going nip points, rotating parts, flying chips, and sparks” … 1910.212 requirements are good place to start, but they leave out the details of exactly how to go about safeguarding any particular machine. Therefore, a reference to an ANSI Standard like B11.3 on press brakes is often used to identify specific safeguarding alternatives. ANSI B11.3 may however need some help from ANSI B11.19 on safeguarding methods, to provide a complete picture of how to go about protecting people.

Older press brakes, like those manufactured in the mid-1980’s and before, were mechanical (flywheel-type) machines, some of which are still in use today. Because the stopping times on mechanical press brakes are long, equally long light curtain safety-distances result, making that safeguarding device impractical in many cases.

Press brakes manufactured after the mid-1980’s are much more likely to be hydraulic. Hydraulic press brakes allow for a wider variety of safeguarding options than mechanical press brakes do, and offer faster stopping-times, resulting in closer safety-distances where light curtains or two-hand controls are used.

A common method of safeguarding press brakes is with a vertically mounted infra-red light curtain. Hydraulic press brakes allow for short stopping times so that a light curtain can be mounted relatively close to the dies.

Two-hand controls on press brakes are often used in the sequence-mode of operation where the actuators bring the machine down and stop before the dies close, allowing just enough die-space to feed the part. The part is placed in the remaining die-opening, then a foot-switch is used to make the bend and return the machine to its full-open position.

Safety distance is required for both light curtains, and two-hand controls. That distance must be calculated with a stop-time measurement (STM) device on a quarterly basis. STM readings must be documented to show safety inspectors.

ANSI B11.3 which was updated in 2012, offers two completely new categories of protection for hydraulic press brakes: Active Optical Protective Devices (lasers) and Safe Speed Safeguarding. Active Optical Protective Devices (AOPDs) detect hands and fingers in a danger area. The biggest attraction for AOPDs are for jobs where the operator must hand hold small parts up close to the dies. A unique feature of AOPDs is that that they are designed to be mounted with zero safety distance, unlike light curtains that must be mounted at a calculated safety-distance, as outlined in ANSI B11.3. Safe Speed Safeguarding is based on a ram speed of 10mm per second or less, providing that speed is carefully monitored. Again, these two new methods of protection can only be applied to hydraulic press brakes (and potentially Servo-Drive Press Brakes).

The Lazersafe® Sentinel Plus is the most advanced guarding solution available designed specifically for hydraulic press brakes. The Lazersafe ties directly into the machine’s existing hydraulic and electric control circuits, providing a Category 4 solution. The Lazersafe is CE rated and allows machine operators to hold workpieces within 20mm of the point of operation. Encoder feedback ensures that the speed and position of the tooling is continuously monitored, and a 4.3” HMI provides machine operators immediate feedback of all vital functions. The Lazersafe Sentinel Plus is compatible with a wide variety of machines and tooling types, material thickness and easily allows for box shapes to be formed.

The backs of press brakes cannot be left wide open. Two hazards exist often exist here. The first is reaching the dies from the back. The second is the possibility of a multi-axis back gauge moving and creating pinch points. As to exactly what is required on the back of equipment often depends on local OSHA interpretation. The very least, an awareness barrier, like a railing, chain, or cable with a “Danger” or “Warning” sign, complete with Pictograms, not just verbiage. (see photo)

For local OSHA interpretations that won’t accept awareness barriers, a full perimeter guard may be the answer for the back of a press brake. That guard can either be bolted into position, or if it’s movable, an electrical interlock switch can be installed to make sure it stays closed.

As with any industrial machine, Lockout/Tagout on Press Brakes must strive for “Zero Energy State” to and within each piece of equipment using both locks and tags.

Also mentioned in the ANSI standard is die safety blocks; please see our related blog post on “Demystifying Die Safety Blocks”.

Please call 1-800-922-7533 or visit rockfordsystems.com for more information.

Safeguarding Lathes

Lathes are often overlooked when Risk Assessments are conducted to determine appropriate “Machine Safeguarding.” OSHA regulations consider lathes to be a 1910.212 machine, saying to the employer, “One or more methods of machine guarding shall be provided to protect the operator and other employees in the machine area from hazards such as those created by point of operation, ingoing nip points, rotating parts, flying chips, and sparks” … but 1910.212 requirements are vague because they cover such a wide variety of machinery. Therefore, a reference to something more detailed, like ANSI B11.6 on metalworking lathes, is required for specific safeguarding alternatives.

From a practical standpoint, the rotating chuck (work-holder) cannot be fully enclosed, unlike gears, sprockets, or chains which can and usually are completely covered, often by the machine’s manufacturer. However, that same lathe manufacturer may provide no safeguarding at or near the point of operation.

Hinged chuck-shields are one of the most common methods to protect lathe operators from the rotating work-holder. Their purpose is to prevent an operator from inadvertently coming in contact with the chuck, which often results in entanglement with it, resulting in serious injury or even death. Chuck shields are commercially available from numerous providers. They may be constructed of metal, polycarbonate, or some combination of materials. When not in use, they need to be swung up out of the way, so most are hinged. Although U.S. Safety Standards and Regulations do not require chuck-shields to be electrically interlocked, some European manufacturers offer that feature. With electrically interlocked shields, when the lathe chuck shield is lifted up, the positive contacts on the microswitch open, sending a stop signal to the machine control. The machine will not start up again until the emergency stop button has been reset.

Another type of protection commonly used on lathes is a chip/coolant shield. These are often useful when the operator’s personal protective equipment (PPE) does not adequately control the waste product coming off of the cutting tool. If chips strike the operator in the upper body or accumulate on the floor creating a slip-trip hazard, a chip/coolant shield is often suggested to supplement the operator’s PPE. OSHA’s 1910.219 addresses the need to cover rotating components to prevent the operator’s hair and clothing from getting entangled, dragging them into the machine. These rotating components include the lead screw, feed rod, traverse rod, and camshaft, in the lower front portion of the lathe.

In April 2011, a lathe’s horizontal rotating components took the life of a 22-year old female student at Yale University’s Sterling Chemistry Laboratory. While working very late at night by herself, her hair became entangled in that part of the machine, resulting in asphyxiation. (Google; Yale Lathe Fatality)

Telescopic metal sleeves are available to cover a lathe’s horizontal rotating components, although many manufacturing companies elect not to use them. According to feedback from OSHA Compliance Officers and Insurance Loss Control Inspectors, one of the most common lathe accidents results from the misuse of the standard chuck wrench furnished by the lathe manufacturer.

When the lathe is not being used, a typical (unsafe) storage place for the chuck-wrench is in the chuck. At some point in time, the operator turns the lathe on without checking to see where the chuck wrench is located, which sends it flying. This has caused serious accidents, including the loss of eyes. Spring-loaded, self-ejecting chuck wrenches are a solution to this problem because they won’t stay in the chuck by themselves. They are available in a number of sizes.

Many older lathes also need updates to bring them up to code with electrical standards like NFPA 79. The two most common updates are for: 1) magnetic motor-starters to provide dropout protection, (a.k.a. anti-restart), and 2) main power disconnects that lock only in the OFF position. As with any machine, provision for Lockout/Tagout is always important.

Danger and Warning signs, depicting specific hazards on lathes are also available.

To see these and other lathe safeguarding products, please call 1-800-922-7533 or visit our website.

Safeguarding Mechanical Power Presses

Mechanical power presses (a.k.a. punch presses, stamping presses, flywheel presses), have existed in the U.S. since 1857. They were originally designed as either full-revolution, or part- revolution, both of which still exist, although the latter currently represents an estimated 90 percent of the roughly 300,000 mechanical power presses being used in the United States today.

This blog will address part-revolution presses only. These are often referred to as “air clutch” presses, made by dozens of manufacturers. The idea of safety for these machines has existed since 1922, when the first ANSI B11.1 Safety Standard was developed. The latest version, ANSI B11.1-2009 is the 10th update of that standard. This is generally considered to contain the “Best Safety Practices” for press users.

In the early 1970’s, OSHA promulgated a “machine specific regulation” for mechanical power presses, their CFR SubPart O, 1910.217. Very few changes have been made to that regulation since then. Keep in mind that OSHA’s 1910.217 Regulation was taken from ANSI B11.1 using a version that was freshly updated for OSHA in 1971. ANSI has updated their B11.1 four times since that time. Every update adds new, more stringent requirements than the previous version.

Although many companies have long since met the basic OSHA requirements for their presses, a significant number of those shops have yet to make updates to meet the latest ANSI B11.1 Standard. When OSHA regulations came 46 years ago, press control systems were primarily relay-logic systems, designed to meet OSHA’s initial requirement for “Control Reliability” and “Brake Monitoring.”

Press control systems manufactured in the mid 1980’s and beyond have been mostly solid-state, designed to meet the ANSI Standard concept for the “Performance of Safety Related Functions.” One of the advantages to solid-state controls are the features built-into them. Two of these are a: built-in “Stopping Performance Monitor” and built-in “Stop Time Measurement,” which prevents users from having to use a portable device to determine “Safety Distance” when applying Light Curtain and Two-hand Control devices.

Mechanical Power Presses require some combination of guards and/or devices to reduce or eliminate exposure to hazards at the “point of operation” where the dies close. Safeguarding alternatives include: Point-of-Operation Guards, Awareness Barriers, Light Curtains, and Two-Hand Controls.

1) Point-of-Operation Guards
Point-Of-Operation Guards are typically used for continuous operations where coil-stock feeds into the press as it operates in an uninterrupted mode of operation.

By OSHA’s definition, a guard must prevent people from reaching over, under, through, or around it. (OUTA is an acronym easy to remember; This guard keeps you “OUTA” here.) Guards must meet one of two measurement scales (the OSHA guard opening scale or the ANSI/CSA guard opening scale), to ensure that a small hand can’t reach far enough through any opening to get hurt.

To discourage misuse, hinged or sliding guard sections are often electrically interlocked, so that they remain in position (closed) during press operations. Without interlocks, movable sections can easily be left open, whether intentional or not, leaving Operators and others in the area unprotected.

Guard Interlocks are attached to hinged or moving guard sections, since access to the point-of-operation is most often made through those openings. Interlock attachment is best accomplished with tamper-resistant fasteners to discourage cheating the switch.

Many older guards use simple lever-arm or push-button switches. Not only are these switches easy to cheat with tape or wire, they are also spring-operated, leaving them subject to failure it the spring breaks. Newer switches are free of springs, and use actuators with a unique geometry, making them much more difficult to defeat.

2) Awareness Barriers (for low-level hazards only)
Another common method of safeguarding on coil-fed presses is an “Awareness Barrier” (A/B). They should completely surround press auxiliary equipment with railings, chains, or cables, suspended on floor stations. Although they don’t provide the same level protection as a guard, they do help to limit access to hazards on auxiliary equipment like coil-payoffs, feeds, straighteners, etc.

Awareness Barriers are considered superior to just a yellow line on the floor, because to get beyond the A/B requires an intentional act and some physical contact with them. This means the person is well aware that they are entering a hazard area, contrary to their safety training. Auxiliary equipment may also require that ingoing rolls are covered to prevent entanglement with long hair or loose clothing.

Awareness barriers should also have several Danger or Warning signs attached to them specifying what the hazards are in going beyond the A/Bs. Examples of sign verbiage might include: moving coil stock, ingoing pinch points, sharp edges, tripping hazard, etc.

3) Light Curtains
Light Curtains have been around since the mid-1950’s. They consist of a vertically mounted transmitter and receiver with closely spaced beams of infra-red light, creating a flat sensing-field. When fingers, hands, or arms that reach through that sensing-field, the press cycle is prevented or stopped to avoid operator injury.

One of the reasons that presses make a good application for light curtains is that they can be stopped mid-cycle very quickly. Light curtains can be used for either single or continuous applications. The only thing that light curtains don’t provide is “impact protection” should something break in the point of operation and be ejected in the operator’s direction. Where that’s an issue, poly carbonate shields or guards may be appropriate.

Like any safeguarding device, light curtains should be “function-tested” before every operating shift to ensure that they are continuing to provide protection. Make/model specific “function-test procedures” are usually available on each light curtain manufacturer’s website.

4) Two-Hand Controls
Two-Hand Controls are considered a safer means of cycling a press than a foot-switch because both hands must be in a safe position to use them. When cycling a press with a foot switch, hands can be anywhere. When operating a press in the single-cycle mode of operation, it’s possible to use a two-hand control as a safeguarding device as well. This requires that they meet a list of rules in both OSHA and ANSI.

Ten of the basic requirements for a two-hand control being used as a safeguarding device (in the single-cycle mode of operation) include:
1) protection from unintended operation
2) located to require the use of both hands (no elbow & finger tips)
3) concurrently operated (actuation within half-second of each other)
4) holding-time during the downstroke (hazardous portion of cycle)
5) anti-repeat (push and release both actuators for each single cycle)
6) interrupted stroke protection (for all operating stations)
7) separate set of two-hand controls for each operator
8) mounted at a calculated “Safety Distance” from nearest hazard
9) control system to meet “Performance of Safety Related Functions”
10) Stopping Performance Monitor is also required

When running high-production operations, don’t forget to consider ergonomics when choosing and installing two-hand controls. Several manufacturers of low-force and no-force actuators are on the market.

Also required by OSHA on Mechanical Power Presses is an electrically interlocked “Safety Block” whenever dies are being adjusting or repaired while they are in the press. The interlock is required because safety blocks are very seldom designed to hold the full working-force of the press (please refer to our Die Safety Blocks blog for additional information).

Mechanical Power Presses require two types of OSHA inspections:
1) Periodic and regular (typically quarterly) inspections of the press parts, auxiliary equipment, and safeguards . . . (don’t forget to document)
2) Weekly inspections of; clutch/brake mechanism, anti-repeat feature . . . along with other items (don’t forget to document)

OSHA requires training (in 1910.217) for anyone who cares for, inspects, maintains, or operates mechanical power presses.

ANSI B11.1-2009, requires training for “all (people) associated with press production systems, including operators, die setters, maintenance personnel, supervisors, which must also include (OSHA) 1910.147 Lockout/Tagout.”

Please call 1-800-922-7533 or visit rockfordsystems.com for more information.

Got Grinders? Get Safeguarding

Safeguarding Standards for Bench and Pedestal Grinders

Grinders are one of the most frequently cited machines during OSHA machine-safety inspections. This is frequently due to improperly adjusted work-rests and tongue-guards on bench/pedestal grinders, as well as a lack of ring-testing for the grinding wheels.

OSHA 29 CFR SubPart O 1910.215 is a “machine specific” (vertical) regulation with a number of requirements, which if left unchecked, are often cited by OSHA as violations. ANSI B11.9-2010 (Grinders) and ANSI B7.1 2000 (Abrasive Wheels) also apply.

Work-Rests and Tongue-Guards
OSHA specifies that work-rests must be kept adjusted to within 1/8-inch of the wheel, to prevent the workpiece from being jammed between the wheel and the rest, resulting in potential wheel breakage. Because grinders run at such a high RPM, wheels actually explode when they break, causing very serious injury, like blindness and even death.

In addition, the distance between the grinding wheel and the adjustable tongue-guard (also known as a “spark arrestor”) must never exceed 1/4-inch. Because the wheel wears down during use, both these dimensions must be regularly checked/adjusted.

“Grinder safety gauges” can be used during the installation, maintenance, and inspection of bench/pedestal grinders to make sure the work-rests and tongue-guards comply with OSHA’s 1910.215 regulation and ANSI standards. Wait until the wheel has completely stopped and the Grinder is properly “Locked Out” before using a “grinder safety gauge”. Grinder coast-down time takes several minutes, which tempts employees to use the “grinder safety gauge” while the wheel is still rotating. This practice is very dangerous because it can cause wheel breakage.

Where grinders are concerned, personal protective equipment (PPE) usually means a full face-shield, not just safety glasses. You cannot be too careful with a machine that operates at several thousand RPM.

Remember, you must DOCUMENT any and all safety requirements set forth by OSHA, as that is their best evidence that safety procedures are really being followed.

Ring-Testing
OSHA says that you must “ring-test” grinding wheels before mounting them to prevent the inadvertent mounting of a cracked grinding wheel.

Ring Testing
Ring-Testing involves suspending the grinding wheel by its center hole, then tapping the side of the wheel with a non-metallic object. This should produce a bell tone if the wheel is intact. A thud, or a cracked-plate sound indicates a cracked wheel. NEVER mount a cracked wheel.

For larger grinders, grinding wheels are laid flat on a vibration-table, with sand evenly spread over the wheel. If the wheel is cracked, the sand moves away from the crack.

To prevent cracking a wheel during the mounting procedure, employees must be very carefully trained in those procedures. This starts with making sure the wheel is properly matched to that particular grinder, using proper blotters and spacers, and knowing exactly how much pressure to exert with a torque-wrench, just to mention a few things.

This OSHA-compliant “Wheel-Cover” allows no more than 90 degrees (total) of the wheel left exposed. (65 degrees from horizontal plane to the top of wheel-cover)
Never exceed these wheel-cover maximum opening dimensions. Larger wheel-cover openings create a wider pattern of flying debris should the wheel explode. A well-recognized safety precaution on bench/pedestal grinders is to stand well off to the side of the wheel for the first full minute before using the machine. Accidents have shown that grinding wheels are most likely to shatter/explode during that first minute.

There is an OSHA Instruction Standard #STD 1-12.8 October 30, 1978 addressing the conditional and temporary removal of the “Work Rest” for use only with larger piece parts based on the condition that “Side Guards” are provided. If this may apply to your grinder(s), make sure that you read the entire thing on OSHA.gov.

Safety Information
Grinding Wheels are Safe… Use but Don’t Abuse

Do

  • Do always Handle and Store wheels in a careful manner
  • Do Visually Inspect all the wheels before mounting for possible damage
  • Do Make Sure Operating Speed of machine Does Not Exceed speed marked on wheel, its blotter or container
  • Do Check Mounting Flanges for equal size, relieved as required & correct diameter
  • Do Use Mounting Blotters when supplied with wheels
  • Do be sure Work Rest is properly Adjusted on bench pedestal, and floor stand grinders
  • Do always Use Safety Guard that covers a minimum of one-half the grinding wheel
  • Do allow Newly Mounted Wheels to run at operating speed, with guard in place, for at least one minute before grinding
  • Do always Wear Safety Glasses or some type of approved eye protection while grinding
  • Do Turn Off Coolant before stopping wheel to avoid creating an out-of-balance condition

Don’t

  • Don’t use a wheel that has been Dropped or appears to have been abused
  • Don’t Force a wheel onto a machine Or Alter the size of the mounting hole – If a wheel won’t fit the machine, get one that will
  • Don’t ever Exceed Maximum Operating Speed established for the wheel
  • Don’t use mounting flanges on which the bearing surfaces Are Not Clean, Flat And Smooth
  • Don’t Tighten the mounting nut Excessively
  • Don’t grind on the Side of conventional, straight or Type 1 wheels
  • Don’t Start the machine Until the Safety Guard is properly and securely In Place
  • Don’t Jam work into the wheel
  • Don’t Stand Directly In Front of a grinding wheel whenever a grinder is started
  • Don’t grind material for which the Wheel Is Not Designed

Source: Grinding Wheel Institute

Rockford Systems Can Help
Rockford Systems offers a wide variety of safeguarding products for grinders.

Grinder Safety Gauge

Bench Grinder Safety Gauge
The bench grinder safety gauge is laser-cut, Grade 5052 aluminum with H32 hardness. The safety yellow, durable powder-coated gauge has silk-screened text and graphics. The bench grinder safety gauge measures 2 3/4-inches wide by 2 1/4-inches high by .1000-inches thick and has a 1/4-inch hole for attachment to the bench grinder.

Standard Mount Grinder Shields
These standard mount grinder shields are available in various sizes for protection from the swarf of bench or pedestal grinders. The frames are constructed of reinforced fiber nylon or heavy cast aluminum. Each shield is furnished with a threaded support rod. The transparent portion of the standard mount grinder shields is made of high-impact resistant polycarbonate to minimize scratching and provide durability.

Direct-Mount or Magnetic-Mount Bench Grinder Shields with Flexible Arms

Double-Wheel and Single-Wheel Bench Grinder Shields
Double-wheel bench grinder shields provide protection for both wheels of the grinder with one continuous shield. The durable shield is made of clear, 3/16-inch-thick polycarbonate and measures 18-inch x 6-inch. A special shield bracket adds stability to the top of the shield. The single-wheel bench grinder shield is made of clear, 3/16-inch-thick polycarbonate and measures 6-inch x 6-inch. This sturdy, impact-resistant shield is designed for use when a single wheel needs safeguarding. These shields have a direct-mount base that attaches directly to the grinder table or pedestal.

Electrically-Interlocked Grinder and Tool Grinder Shields
Electrically Interlocked Grinder and Tool Grinder Shields
These electrically interlocked grinder and tool grinder shields are ideal for single- and double-wheel grinders. When the heavy-duty shield is swung out of position, the positive contacts on the microswitch open, sending a stop signal to the machine control. The safety microswitch electrical wires are furnished with a protective sheath and connect to the safety circuit of the machine that switches off the control to the movement of the grinding wheel. All safety micro switches are mounted in an enclosed housing with an enclosure rating of IP 67. The multi-adjustable, hexagonal steel arm structure allows easy mounting on the most diverse grinders. A versatile clamp allows horizontal and vertical adjustment of the shield. All electrically interlocked grinder and tool grinder shields consist of a high impact-resistant, transparent polycarbonate shield with an aluminum profile support and provide operator protection from flying chips and coolant.

Single-Phase Disconnect Switch

Single-Phase Disconnect Switch and Magnetic Motor Starter
This single-phase unit is designed for motors that have built-in over-loads. Typical applications for these combinations include smaller crimping machines, grinders, drill presses, and all types of saws. The 115-V, 15-A disconnect switch and non-reversing magnetic motor starter are housed in a NEMA-12 enclosure. Enclosure size is 8″ x 6″ x 3 1/2″. It includes a self-latching red emergency-stop palm button and a green motor control start push button. It can be used on machines with 115-V and is rated up to 1/2 HP maximum. The disconnect switch has a rotary operating handle which is lockable in the off position only. This meets OSHA and ANSI standards. For machines with 230-V AC single-phase motors, a transformer is required to reduce the control circuit voltage to 115-V AC in order to comply with NFPA 79.

Danger Sign for Cutting and Turning Machines
Don’t forget to post the appropriate danger signs near all machinery in the plant. The purpose of danger signs is to warn personnel of the danger of bodily injury or death. The suggested procedure for mounting this sign is as follows:
1) Sign must be clearly visible to the operator and other personnel
2) Sign must be at or near eye level
3) Sign must be PERMANENTLY fastened with bolts or rivets

Please call 1-800-922-7533 or visit www.rockfordsystems.com for more information.